Norms and Standardized Scores

The following inputs raw scores from Table 2.1 of the text.

Frequency Distribution

The following recreates Table 2.1 using R.

```
freq <- table(raw_score) # frequency
cumfreq <- cumsum(freq) # cumulative frequency
perc <- prop.table(freq) * 100 # percentage
cumperc <- cumsum(perc) # cumulative percentage
pr <- (cumperc - 0.5 * perc) # percentile rank
cbind(freq, cumfreq, perc, cumperc, pr)
```

	freq	$\operatorname{cumfreq}$	perc	cumperc	pr
25	3	3	5.769231	5.769231	2.884615
26	8	11	15.384615	21.153846	13.461538
27	7	18	13.461538	34.615385	27.884615
28	5	23	9.615385	44.230769	39.423077
29	5	28	9.615385	53.846154	49.038462
30	7	35	13.461538	67.307692	60.576923
31	3	38	5.769231	73.076923	70.192308
32	2	40	3.846154	76.923077	75.000000
33	2	42	3.846154	80.769231	78.846154
34	6	48	11.538462	92.307692	86.538462
35	2	50	3.846154	96.153846	94.230769
36	2	52	3.846154	100.000000	98.076923

Percentile Points

Score points for a particular percentile ranks

```
# P74
quantile(raw_score, .74)
```

74% 31.74

```
# Use a different type (see https://en.wikipedia.org/wiki/Quantile#Estimating_quantiles_from
quantile(raw_score, .74, type = 6)
```

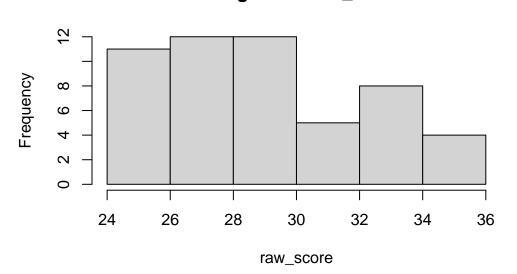
74% 32

Standardized Scores

z-score

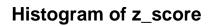
```
z_score <- (raw_score - mean(raw_score)) / sd(raw_score)
c(mean = mean(z_score), sd = sd(z_score))</pre>
```

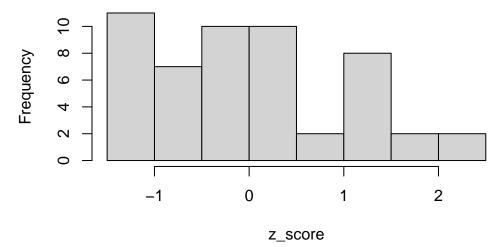
mean sd -4.937123e-16 1.000000e+00

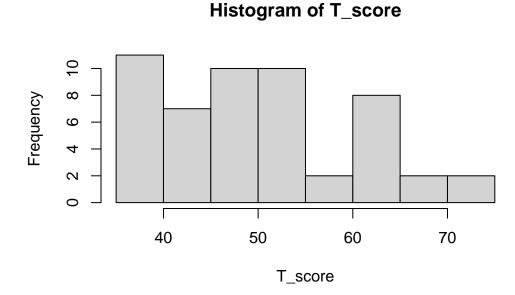

T-score

```
T_score <- z_score * 10 + 50
c(mean = mean(T_score), sd = sd(T_score))</pre>
```

mean sd 50 10

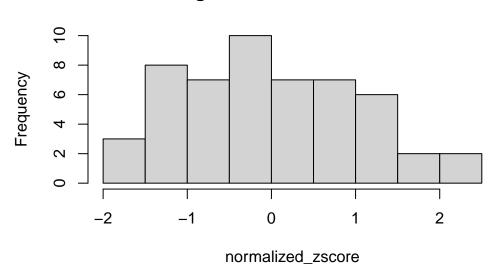

Important


Standardization does not change the shape of the distribution.



Histogram of raw_score

hist(z_score)



However, the histograms may look slightly different as each plot uses somewhat different ways to bin the values. But if you compute the skewness and the kurtosis, they should not be affected by the transformation.

Normalized Scores

Normalized z-score

```
# Using normal quantile
qnorm_pr <- qnorm(pr / 100)
# Convert raw scores
normalized_zscore <- as.vector(qnorm_pr[as.character(raw_score)])
hist(normalized_zscore) # the shape will be closer to normal
```


Histogram of normalized_zscore

Age/Grade Equivalents

The following shows some fake data with two groups, one at age 5 and the other at age 6. The two groups took different forms of the test, and each form has 12 anchor/common items and 24 other items. The total score is the sum of the anchor and other items.

```
# Create data
y5 <- structure(c(14L, 12L, 18L, 8L, 12L, 20L, 16L, 18L, 11L, 21L,
11L, 20L, 18L, 14L, 20L, 13L, 11L, 17L, 19L, 16L, 18L, 14L, 14L,
19L, 18L, 4L, 4L, 12L, 8L, 28L, 18L, 12L, 16L, 9L, 10L, 18L,
12L, 12L, 21L, 15L, 22L, 12L, 8L, 11L, 18L, 10L, 14L, 14L, 5L,
8L, 11L, 16L, 11L, 13L, 10L, 12L, 8L, 18L, 18L, 15L, 17L, 19L,
21L, 15L, 22L, 12L, 15L, 15L, 22L, 20L, 11L, 15L, 16L, 13L, 17L,
17L, 19L, 11L, 13L, 15L, 15L, 12L, 16L, 12L, 15L, 16L, 18L, 15L,
21L, 21L, 18L, 7L, 15L, 18L, 18L, 16L, 16L, 18L, 17L, 19L, 5L,
2L, 8L, 2L, 2L, 4L, 3L, 7L, 5L, 7L, 6L, 6L, 6L, 4L, 8L, 3L, 3L,
3L, 2L, 6L, 4L, 4L, 4L, 5L, 7L, 1L, 1L, 3L, 5L, 8L, 5L, 3L, 5L,
3L, 4L, 6L, 4L, 4L, 5L, 4L, 6L, 2L, 4L, 2L, 3L, 6L, 4L, 3L, 0L,
1L, 3L, 5L, 3L, 6L, 2L, 1L, 2L, 5L, 7L, 6L, 5L, 5L, 8L, 3L, 5L,
3L, 3L, 3L, 6L, 4L, 5L, 5L, 4L, 4L, 6L, 2L, 7L, 3L, 6L, 4L, 4L,
4L, 6L, 3L, 6L, 6L, 7L, 3L, 6L, 6L, 4L, 0L, 4L, 5L, 4L, 6L, 4L,
5L, 6L, 6L), dim = c(100L, 2L), dimnames = list(NULL, c("total", C)
```

```
"anchor")))
y6 <- structure(c(20L, 15L, 10L, 12L, 20L, 14L, 13L, 15L, 24L, 22L,
15L, 16L, 21L, 24L, 9L, 19L, 12L, 13L, 14L, 18L, 10L, 23L, 19L,
11L, 12L, 13L, 18L, 21L, 22L, 22L, 24L, 16L, 13L, 4L, 17L, 24L,
12L, 14L, 23L, 12L, 20L, 16L, 20L, 15L, 12L, 20L, 14L, 8L, 24L,
5L, 26L, 23L, 12L, 15L, 18L, 19L, 18L, 11L, 16L, 17L, 18L, 16L,
19L, 18L, 17L, 17L, 20L, 10L, 12L, 14L, 18L, 10L, 16L, 21L, 15L,
14L, 9L, 13L, 18L, 15L, 4L, 19L, 16L, 21L, 14L, 15L, 26L, 23L,
21L, 20L, 17L, 13L, 10L, 15L, 13L, 21L, 17L, 18L, 24L, 18L, 5L,
5L, 3L, 6L, 7L, 6L, 4L, 5L, 5L, 8L, 4L, 7L, 8L, 7L, 5L, 8L, 3L,
4L, 5L, 6L, 3L, 9L, 6L, 5L, 4L, 3L, 5L, 7L, 8L, 8L, 6L, 5L, 6L,
2L, 5L, 6L, 4L, 6L, 8L, 3L, 7L, 4L, 6L, 5L, 5L, 9L, 7L, 2L, 9L,
2L, 9L, 8L, 3L, 5L, 8L, 6L, 7L, 3L, 6L, 6L, 5L, 6L, 8L, 6L, 8L,
6L, 10L, 6L, 2L, 6L, 6L, 5L, 8L, 8L, 8L, 8L, 3L, 5L, 7L, 5L,
OL, 7L, 7L, 9L, 4L, 5L, 6L, 7L, 6L, 7L, 8L, 6L, 1L, 2L, 5L, 6L,
6L, 7L, 10L, 6L), dim = c(100L, 2L), dimnames = list(NULL, c("total",
"anchor")))
```

Questions

Q1

Compute the means of total scores for the two groups. Do the two groups show differences in their total scores?

Your code

Q2

Repeat Q1 for only the anchor items.

Your code

Q3

Repeat Q1 for only the non-anchor items.

Your code

Q4

Do you think the difficulty levels of the non-anchor items are the same for the test forms? Explain your reasoning.

Q5

The median of the 5-year-old group is 15, so someone taking form A (the form for the 5-year-old group) with a score of 15 will have an AE (age-equivalent score) of 5. What is the issue to say that someone taking form B (the form for the 6-year-old group) with a score of 15 will have an AE of 5?

Q6

What do you think should be the score on form B that corresponds to an AE of 5? (There is no one right answer here, and you should explain your logic.)

Type your code if needed