
Generalizability Theory

Learning Objectives

• Provide some example applications of the generalizability
theory (G theory)

• Contrast G theory with CTT (Table 10.1)
• Explain the differences between crossed and nested facets,

and between random and fixed facets, and between G
studies and D studies

• Estimate variance components and the G and 𝜙 coeffi-
cients for two facets designs

library(here)
library(haven) # for reading SPSS data
library(tidyverse)
library(lme4)

Warning in check_dep_version(): ABI version mismatch:
lme4 was built with Matrix ABI version 2
Current Matrix ABI version is 1
Please re-install lme4 from source or restore original 'Matrix' package

Basic Concepts of G theory

Premise: there are multiple sources of error, and typically ob-
served scores only reflect some specific conditions (e.g., one
rater, two trials)

Goal: investigate whether observed scores under one set of con-
ditions can be generalized to broader conditions.
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Common Applications

• Rating data: Interrater reliability is a special case of G
theory.

• Behavioral observations: generalizability across differ-
ent raters, tasks, occasions, intervals of observations, etc.

• Imaging data: generalizability of scores across different
processing decisions, tasks, etc.

Terminology

Facet: sources of error (e.g., raters, tasks, occasions).
Each facet can be fixed or random.
Condition: level of a facet
Object of Measurement: usually people, which is not
considered a facet. This is always random.
Universe of Admissible Operations (UAO): a broad set
of conditions to which the observed scores generalize
Universerse Score: average score of a person across all
possible sets of conditions in the UAO
G Study: obtain accurate information on the magni-
tude of sources of error
D study: design measurement scenario with the desired
level of dependability with the smallest number of con-
ditions

In G theory, by evaluating the degree of error in differ-
ent sources, we have evidence on whether scores from
some admissible conditions are generalizable across
conditions. If so, the scores are dependable (or reli-
able).
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One-Facet Design

The example in the previous note with each participant rated
by the same set of raters is an example of a one-facet design.

Formula for score of person 𝑖 by rater 𝑗:

𝑌𝑖𝑗 = 𝜇 (universe score)
+ (𝜇𝑝 − 𝜇) (person effect)
+ (𝜇𝑟 − 𝜇) (rater effect)
+ (𝑌𝑖𝑗 − 𝜇𝑝 − 𝜇𝑟 + 𝜇) (residual)

This gives the variance decomposition for three components:

𝜎2(𝑌𝑝𝑟) = 𝜎2
𝑝 + 𝜎2

𝑟 + 𝜎2
𝑝𝑟,𝑒

𝜎2
𝑝 is person variance, or universe score variance.

Model of analysis: two-way random-effect ANOVA, aka
random-effect model, variance component models, or multi-
level models with crossed random effects.

Two-Facet Design

The first example comes from a daily diary study on daily ru-
mination.

• https://osf.io/gnsu2

n = 178, T = 10 days

• rpa1: I often thought of how good I felt today.
• rpa2: I often thought of how strong I felt today.
• rpa3: I often thought today that I would achieve every-

thing.
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# Import data directly from osf.io
rpa_csv <- here::here("data", "rpa_data.csv")
if (!file.exists(rpa_csv)) {

download.file(
"https://osf.io/download/gnsu2/",
destfile = rpa_csv

)
}
rpa_dat <- read.csv(rpa_csv)
rpa_dat |>

dplyr::select(id, day, rpa1:rpa3) |>
dplyr::glimpse()

Rows: 1,780
Columns: 5
$ id <int> 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 204, 204, 204, ~
$ day <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, ~
$ rpa1 <int> 2, 2, 1, 1, 1, NA, 4, 5, 4, 5, 4, 4, 4, NA, NA, 2, NA, NA, 3, 4, ~
$ rpa2 <int> 2, 1, 1, 1, 2, NA, 3, 1, 1, 2, 3, 3, 4, NA, NA, 2, NA, NA, 1, 2, ~
$ rpa3 <int> 3, 2, 2, 2, 2, NA, 2, 3, 2, 1, 2, 2, 4, NA, NA, 2, NA, NA, 1, 3, ~

Data Transformation

The data are in a typical wide format.

Wide Format

• Each row represents a person
• The other facets (rater, task) are embedded in the

columns

While it’s possible to run analyses using the wide format, for our
analyses we’ll transform the data to a long format as it better
suits the analytic framework (variance components model) we’ll
use. This also has better handling for missing data.

We’ll use the pivot_longer() function from the tidyr package
(which is loaded with library(tidyverse)).
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Long Format

• Each row represents an observation (repeated mea-
sure)

• Each facet (rater, task) has its own column

rpa_long <- rpa_dat |>
select(id, day, rpa1:rpa3) |>
pivot_longer(
# select all columns, except the 1st one to be transformed
cols = rpa1:rpa3,
# The columns have a pattern "rpa(d)", where values
# in parentheses are the IDs for the facet. So we first
# specify this pattern, with a "." meaning a one-digit
# place holder,
names_pattern = "rpa(.)",
# and then specify that the place holder is for item.
names_to = c("item"),
values_to = "rpa" # name of score variable

)
head(rpa_long)

# A tibble: 6 x 4
id day item rpa

<int> <int> <chr> <int>
1 202 1 1 2
2 202 1 2 2
3 202 1 3 3
4 202 2 1 2
5 202 2 2 1
6 202 2 3 2

As can be seen, the data are now in a long format.
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rpa_long |>
filter(id %in% unique(id)[1:5]) |>
arrange(id, item, day) |>
ggplot(aes(x = day, y = rpa, color = factor(id), shape = item, linetype = item)) +
geom_line(alpha = 0.5, position = position_jitter(width = 0.1, height = 0.1, seed = 211)) +
geom_point(position = position_jitter(width = 0.1, height = 0.1, seed = 211)) +
scale_x_continuous(breaks = 1:10) +
theme_bw()

Warning: Removed 18 rows containing missing values (`geom_point()`).
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Nested vs. Crossed

Crossed Design

See Example 2 in the other note

Nested Design

The data here has each participant (p) answering same three
items (i) on 10 days (t). However, the participants do not
share the same 10 calendar days or days of week, so unless one
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is interested in day of study effect, one would consider day 2
of Participant A to be different from day 2 of Participant B.
Therefore, this is a (t:p) × i design, where the two facets are
nested.

When facet A is nested in facet B (i.e., a:b), each level
of A is associated with only one level of B, but each
level of B is associated with multiple levels of A.

Variance Decomposition

With a two-facet design, we have the following variance compo-
nents:

• Person
• Facet A
• Facet B
• Person × A
• Person × B
• A × B
• Person × A × B*
• Error*

*The variances due to Person × A ×
B interaction and random error can
only be separated when there is
more than one observation for each
cell (i.e., combination of person, A,
and B), which is uncommon.

With a nested design, one cannot estimate the t:i interaction,
and the main effect of t and the t:p interaction cannot be sep-
arated (See Table 10.6).

m1 <- lmer(
rpa ~ 1 +

(1 | day:id) + (1 | id) + (1 | item) +
(1 | id:item),

data = rpa_long
)
# Variance components (VCs)
vc_m1 <- as.data.frame(VarCorr(m1))
# Organize in a table, similar to Table 10.4
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vc_tab <- data.frame(
source = vc_m1$grp,
var = vc_m1$vcov,
percent = vc_m1$vcov / sum(vc_m1$vcov))

knitr::kable(vc_tab, digits = 2)

Warning in attr(x, "align"): 'xfun::attr()' is deprecated.
Use 'xfun::attr2()' instead.
See help("Deprecated")

Warning in attr(x, "format"): 'xfun::attr()' is deprecated.
Use 'xfun::attr2()' instead.
See help("Deprecated")

source var percent
day:id 0.87 0.32
id:item 0.39 0.14
id 0.58 0.21
item 0.07 0.02
Residual 0.84 0.31

Bootstrap Standard Errors and Confidence Intervals

See Part 2 of the notes.
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Interpreting the Variance Components

Venn diagrams

Figure 1: Venn diagram for variance components

Figure 2: Venn diagram closer to the actual example
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Standard deviation

E.g., The ratings are on a 7-point scale. With �̂�𝑝𝑟 = 0.622, this
is the margin of error due to person-by-item interaction.

Fixed vs. Random

Generally G theory treats conditions of a facet as random,
meaning they are regarded as a random sample from a pop-
ulation collection of samples. However, if such an assumption
does not make sense, such as when people are always going to
be evaluated on the same tasks, and there is no intention to
generalize beyond those tasks, the task facet should be treated
as fixed. Then there are two options:

a. If it makes sense to average the different conditions in a
fixed facet (e.g., average score across tasks), follow the
code below.

b. Otherwise, perform a separate G study for each condition
of the fixed facet.

If treating item as fixed, the person × item variance will be
averaged and become part of the universe score

varu <- vc_m1$vcov[3] + vc_m1$vcov[2] / 3

The residual will be averaged and become part of person × time
variance

vare <- vc_m1$vcov[1] + vc_m1$vcov[5] / 3
# Combine
data.frame(source = vc_m1$grp[c(3, 1)],

var = c(varu, vare),
percent = c(varu, vare) / sum(varu, vare))

source var percent
1 id 0.7126277 0.3823251
2 day:id 1.1513035 0.6176749
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Relative vs. Absolute Decisions

• Error for relative: anything that involves person, includ-
ing the residual

– 𝜎2
𝑝𝑖 + 𝜎2

𝑝𝑡 + 𝜎2
𝑝𝑖𝑡,𝑒

• Error for absolute: every term other than person

– 𝜎2
𝑖 + 𝜎2

𝑡 + 𝜎2
𝑝𝑖 + 𝜎2

𝑝𝑡 + 𝜎2
𝑖𝑡 + 𝜎2

𝑝𝑖𝑡,𝑒

D Studies

Decision studies: Based on the results of G studies, try to min-
imize error as much as possible.

• Find out how many conditions can be used to optimize
generalizability

• Similar to using the Spearman-Brown prophecy formula,
but consider multiple sources of errors

G and 𝜙 Coefficients

G coefficient: For relative decisions

• Only include sources of variation that would change rela-
tive standing as error (𝜎2

REL)

– i.e., interaction terms that involve persons

𝐺 = �̂�2
𝑝

�̂�2𝑝 + �̂�2
REL

𝜙 coefficient: For absolute decisions

• Include all sources of variation, except for the one due to
persons, as error (𝜎2

ABS)
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𝜙 = �̂�2
𝑝

�̂�2𝑝 + �̂�2
ABS

These are analogous to (but not the same as) reliability coeffi-
cients.

mean_scores <- tapply(rpa_long$rpa, INDEX = rpa_long$id, FUN = mean, na.rm = TRUE)
hist(mean_scores, main = "Estimate of universe score", xlab = "y-bar")
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# G coefficient (for relative decision)
g_coef <- with(

as.data.frame(VarCorr(m1)),
vcov[3] / (vcov[3] + vcov[1] / 10 + vcov[2] / 3 + vcov[5] / (10 * 3))

)
# phi coefficient (for absolute decision)
phi_coef <- with(

as.data.frame(VarCorr(m1)),
vcov[3] / (vcov[3] + vcov[1] / 10 + vcov[2] / 3 + vcov[4] / 3 + vcov[5] / (10 * 3))

)
c(g = g_coef, phi = phi_coef)
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g phi
0.7052649 0.6867227

See Cranford et al. (2006) for similar discussion of generaliz-
ability coefficients in longitudinal data.

However, for reliability more comparable to 𝛼 and 𝜔 reliability
coefficients, see Lai (2021).

Note on Notation

The caret (^) symbol in �̂�2 indicate that it is an estimate from
the sample.

In D studies, we typically use 𝑛′ to represent number of condi-
tions for a facet to be used when designing the study. For exam-
ple, with the two-facet crossed design with raters and tasks,

�̂�2
REL = 𝜎2

𝑝𝑟
𝑛′𝑟

+ 𝜎2
𝑝𝑡

𝑛′
𝑡

+ 𝜎2
𝑝𝑟𝑡,𝑒

𝑛′𝑟𝑛′
𝑡
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