PSYC 520
For \(k\) items \(X_1\), \(X_2\), \(\ldots\), \(X_k\), treat each item as a “test”
Scenario 1: three parallel “tests”
For any item \(j\), \(X_j\) = \(T\) + \(E_j\)
For any item \(j\) and \(j'\),
Let \(\mathbf{X} = [X_1, X_2, \ldots, X_k]^\intercal\)
Covariance Matrix of \(\mathbf{X}\):
\[ \mathop{\mathrm{\mathrm{Var}}}(\mathbf{X}) = \begin{bmatrix} \sigma^2_X & & & \\ \sigma^2_T & \sigma^2_X & & \\ \vdots & \vdots & \ddots & \\ \sigma^2_T & \sigma^2_T & \cdots & \sigma^2_X \end{bmatrix} \]
Example
x1 x2 x3
x1 29.20 25.73 25.18
x2 25.73 30.27 25.82
x3 25.18 25.82 29.48
aka sum score: \(Z\) = \(X_1\) + \(X_2\) + \(\ldots\) + \(X_k\) = \(\sum_{j = 1}^k X_j\)
In matrix form: \(Z = \mathbf{1}^\intercal \mathbf{X}\), where \(\mathbf{1}^\intercal\) is a row vector of all ones
There are \(k\) elements in the diagonal (\(\sigma^2_X\)), and it can be shown that there are \(k (k - 1)\) elements in the off diagonal (\(\sigma^2_T\))
\[ \begin{aligned} \mathop{\mathrm{\mathrm{Var}}}(Z) & = k \sigma^2_X + k (k - 1) \sigma^2_T \\ & = k (\sigma^2_T + \sigma^2_E) + k (k - 1) \sigma^2_T \\ & = \underbrace{k^2 \sigma^2_T}_{\text{true score component}} + \underbrace{k \sigma^2_E}_{\text{error component}} \end{aligned} \]
Because reliability = variance due to true score / total variance
\[ \rho_{Z Z'} = \frac{k^2 \sigma^2_T}{k \sigma^2_X + k (k - 1) \sigma^2_T} = \frac{k \sigma^2_T}{\sigma^2_X + (k - 1) \sigma^2_T} \]
Remember that \(\rho_{XX'} = \sigma^2_T / \sigma^2_X\). From the last equation, divide the numerator and denominator by \(\sigma^2_X\):
\[ \rho_{Z Z'} = \frac{k \sigma^2_T / \sigma^2_X}{\sigma^2_X / \sigma^2_X + (k - 1) \sigma^2_T / \sigma^2_X} = \frac{k \rho_{XX'}}{1 + (k - 1) \rho_{XX'}} \]
Important
If \(Z\) is the sum/composite of multiple parallel test scores, and the reliability of each component test score is known, the reliability of \(Z\) can be obtained with the above formula.
Scenario 2: three essentially tau-equivalent “tests”
\(\sigma^2_{X_1}\) = \(\sigma^2_T + \sigma^2_{E_1}\) \(\neq\) \(\sigma^2_{X_2}\)
\(\mathop{\mathrm{\mathrm{Cov}}}(X_1, X_2)\) = \(\sigma_{12}\) is still \(\sigma^2_T\)
Covariance Matrix of \(\mathbf{X}\):
\[ \mathop{\mathrm{\mathrm{Var}}}(\mathbf{X}) = \begin{bmatrix} \sigma^2_{X_{\color{red}1}} & & & \\ \sigma^2_T & \sigma^2_{X_{\color{red}2}} & & \\ \vdots & \vdots & \ddots & \\ \sigma^2_T & \sigma^2_T & \cdots & \sigma^2_{X_{\color{red}3}} \end{bmatrix} \]
Example
x1 x2 x3
x1 29.20 24.17 25.30
x2 24.17 39.68 24.51
x3 25.30 24.51 26.57
Total variance: \(\mathbf{1}^\intercal \mathop{\mathrm{\mathrm{Var}}}(\mathbf{X}) \mathbf{1}\) = \(\sum_{j \neq j'} \sigma_{jj'}\) + \(\sum_{j = 1}^k \sigma^2_{X_k}\)
\(\sum_{j \neq j'} \sigma_{jj'}\) = \(k (k - 1) \sigma^2_T\) \(\Rightarrow\) \(k \sigma^2_T\) = \(\sum_{j \neq j'} \sigma_{jj'} / (k - 1)\)
\[ \begin{aligned} \rho_{Z Z'} & = \frac{k^2 \sigma^2_T}{ \sum_{j \neq j'} \sigma_{jj'} + \sum_{j = 1}^k \sigma^2_{X_k}} = \frac{k \sum_{j \neq j'} \sigma_{jj'} / (k - 1)}{\sum_{j \neq j'} \sigma_{jj'} + \sum_{j = 1}^k \sigma^2_{X_k}} \\ & = \frac{k}{k - 1} \left(1 - \frac{\sum_{j = 1}^k \sigma^2_{X_k}}{\sum_{j \neq j'} \sigma_{jj'} + \sum_{j = 1}^k \sigma^2_{X_k}}\right) \\ & = \frac{k}{k - 1} \left(1 - \frac{\sum \sigma^2_{X_k}}{\sigma^2_Z}\right) \end{aligned} \]
Calculate \(\alpha\) for the following covariance matrix
x1 x2 x3
x1 29.20 24.17 25.30
x2 24.17 39.68 24.51
x3 25.30 24.51 26.57
Unidimensionality: the extent to which a scale measures only one dimension
A high \(\alpha\) does not imply that the items are unidimensional
Computing \(\alpha\) does not require unidimensionality, as long as the overall composite score is meaningful
In many applied situations, when unidimensionality holds, the discrepancy between \(\alpha\) and true reliability is small
By Küder and Richardson
Same as \(\alpha\) but for binary items, with \(\sigma^2_{X_j}\) = \(p_j q_j\), where \(p\) is proportion correct and \(q\) is \(1 - p\)
!!! It is Not a property of the test
Say:
Do not say:
aka coefficient of stability: Correlation between pre and post scores
Instability could be due to
aka margin of error for test score
SEM = \(\sigma_E\) = \(\sigma_X \sqrt{1 - \rho_{XX'}}\)
E.g., On an IQ test with SD = 15 and a reliability of .84, the SEM is 6. So for a person with a score of 110, the 95% CI is roughly 110 \(\pm\) 12, or [98, 122].
Note
Difference score: \(D\) = \(X_2 - X_1\) (Post - Pre)
\[ \mathop{\mathrm{\mathrm{Var}}}(D) = \sigma^2_{X_1} + \sigma^2_{X_2} - 2 \underbrace{\rho_{X_1 X_2}}_{\text{pre-post correlation}} \sigma_{X_1} \sigma_{X_2} \]
True score: \(T_2 - T_1\)
\[ \begin{aligned} \mathop{\mathrm{\mathrm{Var}}}(T_2 - T_1) & = \sigma^2_{T_1} + \sigma^2_{T_2} - 2 \sigma_{T_1, T_2} \\ & = \underbrace{\rho_{X_1 X_1'}}_{\text{reliability at Time 1}} \sigma^2_{X_1} + \underbrace{\rho_{X_2 X_2'}}_{\text{reliability at Time 2}} \sigma^2_{X_2} \\ & \quad - 2 \underbrace{\rho_{X_1 X_2}}_{\text{pre-post correlation}} \sigma_{X_1} \sigma_{X_2} \end{aligned} \]
When the the pre-post correlation is high, the variance of the difference scores will be low
\(\Rightarrow\) lower reliability of \(D\)
Reliability of \(D\) decreases with larger pre-post correlations
Calculate \(\rho_{D D'}\) with \(\rho_{X_1 X_1'}\) = .80, \(\rho_{X_2 X_2'}\) = .90, \(\sigma^2_{X_1} = 3\), \(\sigma^2_{X_2} = 5\), and
E.g., longitudinal data (lv 1: repeated observations; lv 2: people)
E.g., lv 1: participants; lv 2: sites
Three types of composites, so three \(\alpha\) coefficients
See R note