Coefficient \(\alpha\) (Part I)

library(psych)
library(modelsummary)  # for summarizing data

In the first part, we will first simulate some data with the true scores being known, and compute the reliability. We will then “brainwash” ourselves regarding any knowledge of the true scores, and estimate the \(\alpha\) reliability.

# Simulate true scores
set.seed(2033)
num_persons <- 100
num_items <- 3
true_score <- round(
    rnorm(num_persons, mean = 3.5, sd = 1),
    digits = 2)
# Simulate observed scores
item1 <- round(
    true_score + runif(num_persons, min = -1, max = 1)
)
item2 <- round(
    true_score + runif(num_persons, min = -1.5, max = 1.5)
)
item3 <- round(
    true_score + runif(num_persons, min = -2, max = 2)
)
item_data <- data.frame(true_score, item1, item2, item3)
item_data
    true_score item1 item2 item3
1         2.58     3     4     2
2         3.20     4     3     3
3         1.82     3     1     0
4         3.03     4     4     3
5         3.52     3     4     6
6         4.16     4     4     6
7         3.71     3     4     2
8         2.49     2     3     1
9         2.64     3     2     1
10        1.81     2     1     0
11        3.18     2     3     2
12        4.14     3     5     4
13        3.40     2     2     3
14        2.97     2     4     2
15        4.00     3     5     5
16        4.92     5     4     5
17        3.23     3     2     4
18        4.06     5     3     2
19        4.76     4     6     5
20        2.76     3     3     1
21        2.91     4     2     2
22        3.68     4     5     2
23        3.72     4     4     3
24        2.60     2     1     3
25        4.33     5     4     5
26        2.54     3     2     4
27        3.50     4     2     4
28        4.08     4     3     3
29        3.71     4     4     3
30        4.43     5     5     6
31        3.34     3     5     2
32        3.95     5     3     3
33        5.27     5     5     4
34        2.97     3     4     2
35        2.11     2     1     1
36        3.47     3     4     2
37        2.54     2     2     4
38        2.00     2     3     1
39        3.54     4     5     2
40        3.83     4     3     3
41        3.47     3     4     2
42        4.14     5     5     3
43        2.01     2     2     4
44        5.22     6     6     6
45        2.96     4     4     2
46        1.54     1     1     3
47        4.26     5     5     3
48        2.53     3     3     3
49        3.71     4     5     6
50        3.29     4     5     5
51        4.25     5     4     4
52        4.29     4     4     5
53        2.63     3     3     5
54        4.85     5     6     5
55        3.23     3     3     3
56        2.74     2     2     4
57        2.75     2     3     1
58        3.46     3     3     3
59        2.98     3     4     4
60        4.50     5     4     5
61        4.69     6     4     3
62        4.99     4     6     4
63        3.94     5     3     5
64        3.29     4     3     2
65        3.87     4     5     3
66        4.72     5     3     5
67        4.17     4     3     5
68        5.01     6     4     4
69        3.18     3     4     3
70        3.34     4     3     2
71        4.93     5     5     4
72        2.40     3     2     2
73        1.89     2     2     2
74        3.07     3     3     3
75        5.11     6     6     5
76        4.50     4     5     6
77        3.03     4     2     5
78        3.67     4     3     2
79        2.65     3     1     2
80        4.48     5     6     4
81        1.64     1     0     2
82        2.96     3     2     3
83        2.56     2     3     3
84        4.30     5     6     4
85        4.33     5     4     4
86        3.25     2     3     5
87        3.07     4     3     1
88        3.12     3     2     3
89        2.85     4     2     2
90        3.64     3     5     3
91        3.90     3     3     2
92        3.10     3     4     2
93        1.68     1     1     3
94        3.43     3     5     2
95        2.33     2     3     2
96        1.52     1     3     1
97        4.16     5     5     6
98        2.66     3     2     3
99        2.98     3     4     5
100       3.88     3     4     3
datasummary(item1 + item2 + item3 ~ Mean + Var + Histogram,
            data = item_data)
Warning in attr(x, "align"): 'xfun::attr()' is deprecated.
Use 'xfun::attr2()' instead.
See help("Deprecated")
Mean  Var Histogram
item1 3.50 1.42 ▁▃▇▆▄▁
item2 3.47 1.89 ▂▄▇▆▄▂
item3 3.22 2.15 ▁▂▇▇▄▄▂

Q1: The three items share the same true scores. Are the items parallel, tau-equivalent, essentially tau-equivalent, or congeneric? Why?

Answer:

Next, we consider the composite of the three items by summing the scores for each person.

sum_scores <- rowSums(item_data[c("item1", "item2", "item3")])

Each item has a true score. The true score for the item sum is the sum of the item true scores.

# Same true score for each item
true_score_sum <- true_score + true_score + true_score

Q2: What is the variance of the sum scores?

# Your R code

Answer:

Q3: What is the variance of the true scores for the item sums?

# Your R code

Answer:

Q4: From Q2 and Q3, what is the reliability of the sum scores?

Answer:

Q5: What is the reliability estimates (and the corresponding confidence intervals) of the sum scores, using the psych::alpha() function?

# Your code

Answer: