References
Brooks, S. P., & Gelman, A. (1998). General methods for monitoring
convergence of iterative simulations. Journal of Computational and
Graphical Statistics, 7(4), 434–455. https://doi.org/10.1080/10618600.1998.10474787
Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe
estimator for sparse signals. Biometrika, 97(2),
465–480. https://doi.org/10.1093/biomet/asq017
Gelman, A., Hill, J., & Vehtari, A. (2021). Regression and other
stories. Cambridge University Press.
Gelman, A., & Rubin, D. B. (1992). Inference from iterative
simulation using multiple sequences. Statistical Science,
7(4). https://doi.org/10.1214/ss/1177011136
Gigerenzer, G. (2004). Mindless statistics. The Journal of
Socio-Economics, 33(5), 587–606. https://doi.org/10.1016/j.socec.2004.09.033
Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2008). An
application of a mixed‐effects location scale model for analysis of
ecological momentary assessment (EMA) data. Biometrics,
64(2), 627–634. https://doi.org/10.1111/j.1541-0420.2007.00924.x
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T.
(1999). Bayesian model averaging: A tutorial. Statistical
Science, 14(4). https://doi.org/10.1214/ss/1009212519
Imai, K., Keele, L., & Tingley, D. (2010). A general approach to
causal mediation analysis. Psychological Methods,
15(4), 309–334. https://doi.org/10.1037/a0020761
Johnson, A. A., Ott, M. Q., & Dogucu, M. (2022). Bayes rules! An
introduction to Bayesian modeling with R. CRC Press.
Lai, M. H. C., & Kwok, O. (2015). Examining the rule of thumb of not
using multilevel modeling: The “design effect smaller than
two” rule. The Journal of Experimental Education,
83(3), 423–438. https://doi.org/10.1080/00220973.2014.907229
Lambert, B. (2018). A student’s guide to Bayesian statistics.
SAGE.
McCandless, L. C., & Somers, J. M. (2019). Bayesian sensitivity
analysis for unmeasured confounding in causal mediation analysis.
Statistical Methods in Medical Research, 28(2),
515–531. https://doi.org/10.1177/0962280217729844
McElreath, R. (2020). Statistical rethinking: a Bayesian course with
examples in R and Stan (Second edition). CRC Press.
McGrayne, S. B. (2011). The theory that would not die: How Bayes’
rule cracked the enigma code, hunted down Russian submarines, &
emerged triumphant from two centuries of controversy. Yale
university press.
Piironen, J., Paasiniemi, M., & Vehtari, A. (2020). Projective
inference in high-dimensional problems: Prediction and feature
selection. Electronic Journal of Statistics, 14(1). https://doi.org/10.1214/20-EJS1711
Piironen, J., & Vehtari, A. (2017). Sparsity information and
regularization in the horseshoe and other shrinkage priors.
Electronic Journal of Statistics, 11(2). https://doi.org/10.1214/17-EJS1337SI
Van De Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M.,
& Depaoli, S. (2017). A systematic review of Bayesian articles in
psychology: The last 25 years. Psychological Methods,
22(2), 217–239. https://doi.org/10.1037/met0000100
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian
model evaluation using leave-one-out cross-validation and WAIC.
Statistics and Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner,
P.-C. (2021). Rank-normalization, folding, and localization: An improved
Rˆ for assessing convergence of MCMC (with discussion). Bayesian
Analysis, 16(2). https://doi.org/10.1214/20-BA1221
Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using
stacking to average Bayesian predictive distributions (with discussion).
Bayesian Analysis, 13(3). https://doi.org/10.1214/17-BA1091
Yimer, B. B., Lunt, M., Beasley, M., Macfarlane, G. J., & McBeth, J.
(2023). BayesGmed: An R-package for Bayesian causal mediation analysis.
PLOS ONE, 18(6), e0287037. https://doi.org/10.1371/journal.pone.0287037